Processing math: 100%
본문 바로가기

The relation between applied torque and axial force(볼트 토크와 축력 관계) 볼트의 토크와 축력의 관계는 다음 식과 같다. T=KFd where, T = wrench torque(N.m, in.lb) K = constant that depends on the bolt material and size d = norminal bolt diameter(m, in) F = axial bolt force(N, lb) Typical values for K with mild-steel bolts in range 1/4" to 1" : normal dry : 0.2 nonplated black finish : 0.3 zink-plated : 0.2 slightly lubricated : 0.18 cadmium-plated : 0.16
합계(sigma) 및 라디안(radian) 합계 Σ(시그마) 푸리에 급수 공식 같은 긴 식을 단단히 나타낼 수 있는 방법중 하나인 Σ(시그마)는 덧셈을 표시하는 기호이다(단, 순서에 규칙이 없다면 쓸수 없다.) 예를 몇가지 들어보면, A=1+2+3+4+5+6+7 이 식을 Σ를 사용해 다시 써보면 다음과 같이 줄어든다. A=7n=1n B=(x+1)+(x+2)+(x+3) B=3n=1(x+n) 또 무한한 공식에 대한 표현도 가능하다. 예를 들면 다음과 같다. C=Y1+Y2+Y3+... C=n=1Yn 이번엔 Σ를 이용해 푸리에 급수 공식을 나타내면 다음과 같다. $f(t) = a_{0} + a_{1} cos \..
삼각함수 및 파동 삼각함수란? 직각 삼각형에서 직각이 아닌 각을 선택하고 이각을 θ로 할때 θ에 대한 두변의 비율의 함수이다. θ가 변하면 두변의 기울기도 변한다. 삼각형의 오른쪽 아래에 직각, 왼쪽 아래를 θ로 할때, cb의 비율은 sinθ, ab의 비율은 cosθ, ca의 비율은 tanθ 라고 한다. 이들은 삼각형의 크기와는 상관없이 θ값에 따라서만 값이 정해진다. sin 함수(파형) 먼저 θ의 변화에 따른 sinθ의 변화를 그래프로 나타내자 간단히 하기 위해서 빗변을 a라 정하자. 그렇게 하면 θ가 늘어나는 상..
자유낙하 및 포물선 운동 -중력에 의해 물체가 자유낙하하는 경우 - 공기의 저항을 무시할 경우 낙하후 시간 t에서의 속도 v 와 거리 d는 다음과 같다. - 지상 40m에서 물체가 자유낙하 하는 경우 지상에서의 속도를 계산하려면, 먼전 도달 시간을 계산한다. 지상에서의 속도는 초기점에서 속도(v0), 초기 각도(θ)로 발사된 물체의 궤적은 포물선 운동을 하며, 포물선의 운동은 다음과 같다. 초기점에서 의 속도 v0를 각각 x, y축에 대한 성분으로 나타내면 다음과 같다. 여기서, 수평방향은 등속운동을 하며, 수직방향으로는 중력의 영향을 받게된다. 발사체가 최고점에 도달하는 시간은 y성분이 0이 되는 시점이므로 아래와 같이 구할 수 있다. 최고점에서의 높이를 구하려면 속도의 y성분이 0이 되는 시점이므로 아래와 같이 구할 수 있다..

728x90
반응형