$n$ 개의 미지주 $x_{1}$, $x_{2}$, $\cdots$, $x_{n}$에 관한 $m$ 개의 연립방정식
$a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = b_{1} $
$a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = b_{2} $
$a_{m1} x_{1} + a_{m2} x_{2} + \cdots + a_{mn} x_{n} = b_{m} $
$AX = B$
$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots &&& \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{bmatrix}$
$AX = B$
$A^{-1} (AX) = A^{-1} B$ $(A^{-1} A = I , IX = X)$
$X = A^{-1} B$
ex 1)
$2x_{1} - 9 x_{2} = 15$
$3x_{1} + 6 x_{2} = 16$
$\begin{bmatrix} 2 & -9 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 15 \\ 16 \end{bmatrix}$ $\begin{vmatrix} 2 & -9 \\ 3 & 6 \end{vmatrix} = 39 \neq 0$ 정치행렬
$\begin{bmatrix} 2 & -9 \\ 3 & 6 \end{bmatrix}^{-1} = \frac{1}{39} \begin{bmatrix} 6 & -3 \\ 9 & 2 \end{bmatrix}^{T} = \frac{1}{39} \begin{bmatrix} 6 & 9 \\ -3 & 2 \end{bmatrix}$
$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \frac{1}{39} \begin{bmatrix} 6 & 9 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 15 \\ 16 \end{bmatrix} = \frac{1}{39} \begin{bmatrix} 6 \times 15 + 9 \times 16 \\ -3 \times 15 + 2 \times 16 \end{bmatrix} = \begin{bmatrix} 6 \\ -1/3 \end{bmatrix}$
∴ $x_{1} = 6$, $x_{2} = -1/3$
ex 2)
$2x_{1} + x_{3} = 2$
$5x_{1} + 5x_{2} + 6x_{3} = -1$
$-2x_{1} + 3x_{2} + 4x_{3} = 4$
$\Rightarrow \begin{bmatrix} 2 & 0 & 1 \\ 5 & 5 & 6 \\ -2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4\end{bmatrix}$
$A = \begin{bmatrix} 2 & 0 & 1 \\ 5 & 5 & 6 \\ -2 & 3 & 4 \end{bmatrix}$ , $A^{-1} = \begin{bmatrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{bmatrix}$
$X=A^{-1} B$
$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix}$
$\begin{bmatrix} (-2)(2) + (5)(4) + (-3)(-1) \\ (-8)(2) + (17)(4) + (-10)(-1) \\ (5)(2) + (-10)(4) + (6)(-1)\end{bmatrix} = \begin{bmatrix} 19 \\ 62 \\ -36\end{bmatrix}$ $\begin{matrix} x_{1} \\ x_{2} \\ x_{3} \end{matrix}$
'Study materials > Mathematics' 카테고리의 다른 글
행렬(Matrix) 10. 행렬의 고유값 문제 (0) | 2021.03.31 |
---|---|
행렬(Matrix) 8. Gauss-Jordan 소거법(행 연산법) (0) | 2021.03.30 |
행렬(Matrix) 7. 역행렬 (0) | 2021.03.29 |
행렬(Matrix) 6. Cramer 법칙 (0) | 2021.03.29 |
행렬(Matrix) 5. 행렬식의 성질 (0) | 2021.03.29 |