Processing math: 100%
본문 바로가기

행렬(Matrix) 6. Cramer 법칙

■ Cramer 법칙

        a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn

        [a11a12a1na21a22a2nan1an2ann][x1x2xn]=[b1b2bn]        detA0 단일해

        xj=|a11a12b1a1na21a22b2a2nan1an2bnann||a11a12a1ja1na21a22a2na2na31a32a3ja3n| =D1=detA(1jn)=D=detA

        x1=D1D=detA1detA,    x2=D2D=detA2detA,    xn=DnD=detAndetA

 

    ex) Cramer 법칙을 이용하여 연립방정식 풀이

        3x1+2x2+x3=7x1+x2+3x3=35x1+4x22x3=1      [321113542][x1x2x3]=[731]

                                                                 A

        detA=3(1)1+1|1342|+2(1)1+2|1352|+1(1)1+3|1154|

                         =3(212)+(2)(215)+1(4+5)=30+34+9=13

        detA1=|721313142|

                         =7(1)1+1|1342|+2(1)1+2|3312|+1(1)1+3|3114|

                         =7(212)+(2)(63)+1(12+1)=70+18+13=39

=3(212)+(2)(215)+1(4+5)=30+34+9=13

                        detA2=|371133512|

                        =3(1)1+1|3312|+7(1)1+2|1352|+1(1)1+3|1351|

                        =3(63)+(7)(215)+1(115)=27+11914=78

                        detA3=|327113541|

                        =3(1)1+1|1341|+2(1)1+2|1351|+7(1)1+3|1154|

                        =3(112)+(2)(115)+7(4+5)=39+28+63=52

    ∴ x1=detA1detA=3913=3,    x2=detA2detA=7813=6,    x3=detA3detA=5213=4