■ Gauss-Jordan 소거법
n×n 행렬 A가 일련의 기본 행연산에 의하여 n×n의 단위행렬 I로 변환, A는 정칙행렬
[A|I]=[a11a12⋯a1na21a22⋯a2n⋮⋮an1an2⋯ann|10⋯001⋯0⋮⋮00⋯1]
[A|I]⇒[I|A−1]
ex 1)
A=[−1123−11−134]
가우스 소거법
[A|I]=[−1123−11−134|100010001] R2+R1(3)R3+(−1)R1
=[−112027022|100310−101] R3+(−1)R2
=[−11202700−5|100310−4−11] (−1)R1(0.5)R2(−0.2)R3
=[1−1−20135001|−1001.50.500.80.2−0.2] R1+(2)R3R2+(−3.5)R3
=[1−10010001|0.60.4−0.4−1.3−0.20.70.80.2−0.2] R1+R2
=[100010001|−0.70.20.3−1.3−0.20.70.80.2−0.2]
검증
[−1123−11−134][−0.70.20.3−1.3−0.20.70.80.2−0.2]=[100010001]
(−1)(0.7)+(1)(−1.3)+(2)(0.8)=−0.7+(−0.3)−1.6=1
∴ AA−1=I A−1A=I
ex2)
A=[201−234−556]
[201−234−556|100010001] 1/2R1⇒ [100.5−234−556|0.500010001]
2R1+R25R1+R3⇒ [101/20350517/2|1/2001105/201]
1/3R21/5R3⇒ [101/2015/30117/10|1/2001/31/301/201/5]
(−1)R2+R3⇒ [101/2015/3001/30|1/2001/31/301/6−1/31/5]
30R3⇒ [101/2015/3001|1/2001/31/305−106]
(−1/3)R3+R1(−5/3)R3+R2⇒ [100010001|−25−3−817−105−106]
ex 3) 특이행렬
A=[1−1−224560−3]
[201−234−5561−1−224560−3|100010001] (−1)R1+R2⇒ [1−1−206960−3|100−210001]
(−6)R1+R3⇒ [1−1−2069069|100−210−601]
(−1)R2+R3⇒ [1−1−2069000|100−210−4−11] 0행을 가지므로 특이행렬
'Study materials > Mathematics' 카테고리의 다른 글
행렬(Matrix) 10. 행렬의 고유값 문제 (0) | 2021.03.31 |
---|---|
행렬(Matrix) 9. 역행렬을 이용한 연립방정식 풀이 (1) | 2021.03.31 |
행렬(Matrix) 7. 역행렬 (0) | 2021.03.29 |
행렬(Matrix) 6. Cramer 법칙 (0) | 2021.03.29 |
행렬(Matrix) 5. 행렬식의 성질 (0) | 2021.03.29 |