■ Gauss-Jordan 소거법
$n \times n$ 행렬 $A$가 일련의 기본 행연산에 의하여 $n \times n$의 단위행렬 $I$로 변환, $A$는 정칙행렬
$\begin{bmatrix} A | I \end{bmatrix} = \left [ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots &&& \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right | \left . \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots &&& \vdots \\ 0 & 0 & \cdots & 1 \end{matrix} \right ]$
$\begin{bmatrix} A | I \end{bmatrix} \Rightarrow \begin{bmatrix} I | A^{-1} \end{bmatrix}$
ex 1)
$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$
가우스 소거법
$\begin{bmatrix} A | I \end{bmatrix} = \left [ \begin{matrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]$ $\begin{matrix} R_{2} + R_{1} (3) \\ R_{3} + (-1) R_{1}\end{matrix}$
$ = \left [ \begin{matrix} -1 & 1 & 2 \\ 0 & 2 & 7 \\ 0 & 2 & 2 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 0 & 1 \end{matrix} \right ]$ $\begin{matrix} R_{3} + (-1)R_{2} \end{matrix}$
$ = \left [ \begin{matrix} -1 & 1 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & -5 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & -1 & 1 \end{matrix} \right ]$ $\begin{matrix} (-1)R_{1} \\ (0.5)R_{2} \\ (-0.2)R_{3} \end{matrix}$
$ = \left [ \begin{matrix} 1 & -1 & -2 \\ 0 & 1 & 35 \\ 0 & 0 & 1 \end{matrix} \right | \left . \begin{matrix} -1 & 0 & 0 \\ 1.5 & 0.5 & 0 \\ 0.8 & 0.2 & -0.2 \end{matrix} \right ]$ $\begin{matrix} R_{1} +(2)R_{3} \\ R_{2} +(-3.5)R_{3} \end{matrix}$
$ = \left [ \begin{matrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right | \left . \begin{matrix} 0.6 & 0.4 & -0.4 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{matrix} \right ]$ $\begin{matrix} R_{1} +R_{2} \end{matrix}$
$ = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right | \left . \begin{matrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{matrix} \right ]$
검증
$\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix} \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
$(-1)(0.7) + (1)(-1.3) + (2)(0.8) = -0.7 + (-0.3) - 1.6 = 1$
∴ $AA^{-1} = I$ $A^{-1}A = I$
ex2)
$A = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{bmatrix}$
$\left [ \begin{matrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]$ $\begin{matrix} 1/2R_{1} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 0.5 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{matrix} \right | \left . \begin{matrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]$
$\begin{matrix} 2R_{1} + R_{2} \\ 5R_{1} + R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 1/2 \\ 0 & 3 & 5 \\ 0 & 5 & 17/2 \end{matrix} \right | \left . \begin{matrix} 1/2 & 0 & 0 \\ 1 & 1 & 0 \\ 5/2 & 0 & 1 \end{matrix} \right ]$
$\begin{matrix} 1/3R_{2} \\ 1/5R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 1/2 \\ 0 & 1 & 5/3 \\ 0 & 1 & 17/10 \end{matrix} \right | \left . \begin{matrix} 1/2 & 0 & 0 \\ 1/3 & 1/3 & 0 \\ 1/2 & 0 & 1/5 \end{matrix} \right ]$
$\begin{matrix} (-1)R_{2} + R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 1/2 \\ 0 & 1 & 5/3 \\ 0 & 0 & 1/30 \end{matrix} \right | \left . \begin{matrix} 1/2 & 0 & 0 \\ 1/3 & 1/3 & 0 \\ 1/6 & -1/3 & 1/5 \end{matrix} \right ]$
$\begin{matrix} 30R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 1/2 \\ 0 & 1 & 5/3 \\ 0 & 0 & 1 \end{matrix} \right | \left . \begin{matrix} 1/2 & 0 & 0 \\ 1/3 & 1/3 & 0 \\ 5 & -10 & 6 \end{matrix} \right ]$
$\begin{matrix} (-1/3)R_{3} + R_{1} \\ (-5/3)R_{3} +R_{2}\\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right | \left . \begin{matrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{matrix} \right ]$
ex 3) 특이행렬
$A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & 4 & 5 \\ 6 & 0 & -3 \end{bmatrix}$
$\left [ \begin{matrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 61 & -1 & -2 \\ 2 & 4 & 5 \\ 6 & 0 & -3 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]$ $\begin{matrix} (-1)R_{1} + R_{2} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & -1 & -2 \\ 0 & 6 & 9 \\ 6 & 0 & -3 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]$
$\begin{matrix} (-6)R_{1} + R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & -1 & -2 \\ 0 & 6 & 9 \\ 0 & 6 & 9 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -6 & 0 & 1 \end{matrix} \right ]$
$\begin{matrix} (-1)R_{2} + R_{3} \\ \Rightarrow \end{matrix}$ $\left [ \begin{matrix} 1 & -1 & -2 \\ 0 & 6 & 9 \\ 0 & 0 & 0 \end{matrix} \right | \left . \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -4 & -1 & 1 \end{matrix} \right ]$ 0행을 가지므로 특이행렬
'Study materials > Mathematics' 카테고리의 다른 글
행렬(Matrix) 10. 행렬의 고유값 문제 (0) | 2021.03.31 |
---|---|
행렬(Matrix) 9. 역행렬을 이용한 연립방정식 풀이 (1) | 2021.03.31 |
행렬(Matrix) 7. 역행렬 (0) | 2021.03.29 |
행렬(Matrix) 6. Cramer 법칙 (0) | 2021.03.29 |
행렬(Matrix) 5. 행렬식의 성질 (0) | 2021.03.29 |