Loading [MathJax]/jax/output/CommonHTML/jax.js
본문 바로가기

행렬(Matrix) 8. Gauss-Jordan 소거법(행 연산법)

■ Gauss-Jordan 소거법

    n×n 행렬 A가 일련의 기본 행연산에 의하여  n×n의 단위행렬 I로 변환, A는 정칙행렬

    [A|I]=[a11a12a1na21a22a2nan1an2ann|100010001]

    [A|I][I|A1]

 

ex 1)

    A=[112311134]

가우스 소거법

    [A|I]=[112311134|100010001]    R2+R1(3)R3+(1)R1

         =[112027022|100310101]    R3+(1)R2

         =[112027005|100310411] (1)R1(0.5)R2(0.2)R3

        =[1120135001|1001.50.500.80.20.2] R1+(2)R3R2+(3.5)R3

        =[110010001|0.60.40.41.30.20.70.80.20.2] R1+R2

         =[100010001|0.70.20.31.30.20.70.80.20.2]

검증

       [112311134][0.70.20.31.30.20.70.80.20.2]=[100010001]

       (1)(0.7)+(1)(1.3)+(2)(0.8)=0.7+(0.3)1.6=1

        ∴ AA1=I    A1A=I

 

ex2)

    A=[201234556]

        [201234556|100010001]    1/2R1    [100.5234556|0.500010001]

        2R1+R25R1+R3    [101/20350517/2|1/2001105/201]

        1/3R21/5R3    [101/2015/30117/10|1/2001/31/301/201/5]

        (1)R2+R3    [101/2015/3001/30|1/2001/31/301/61/31/5]

        30R3    [101/2015/3001|1/2001/31/305106]

        (1/3)R3+R1(5/3)R3+R2    [100010001|253817105106]

 

ex 3) 특이행렬

    A=[112245603]

        [201234556112245603|100010001]    (1)R1+R2    [112069603|100210001]

        (6)R1+R3    [112069069|100210601]

        (1)R2+R3    [112069000|100210411]    0행을 가지므로 특이행렬